Engineers and plant scientists team up to optimize corn growth

left to right, Erin Sparks, Pete Moore, Burt Tanner, Adam Stager, Teclemariam Weldekidan and Randy WisserEach new technological advancement in agriculture, from tractors to tillage techniques, has allowed farmers to plant and harvest more food in less time. Today’s era of agricultural innovation is precision agriculture — optimizing crop performance in farmers’ fields based on their individual characteristics. To combat the range of challenges in agriculture, such as improving crop yields and plant resiliency, increasing pest resistance, addressing nutrient insufficiency, and more, scientific insights into the crop are needed.

Robots are important tools for precision agriculture because they can quickly collect valuable data to help farmers fine-tune their methods of planting, irrigation, pest control, harvesting and more. Similarly, for scientific discovery that underlies crop improvement, robots make it possible to gather a wide range of information on very large numbers of plants – tens to hundreds of thousands – in order to break new ground in plant science.

With robotics engineers and scientists who study plant genetics and biology, the University of Delaware is an ideal breeding ground for robotic agricultural technology. Algorithms and circuits can be designed and built in laboratories onsite, and machinery can be tested in “outdoor laboratories” located on the University’s Newark campus. With the range of expertise at UD, the on-campus farm with dedicated research fields is a unique asset that facilitates cross pollination of different scientific domains, ranging from biology to engineering to data science, which can open new pathways that address challenges in agriculture. Read the full article on UDaily