Shanshan Ding, Ph.D.

Ph.D., Statistics, University of Minnesota, Minneapolis, 2014
M.S., Applied and Computational Mathematics, University of Minnesota, Duluth, 2008
M.S., Finance, Peking University, 2004
B.S., Applied Mathematics, Nankai University, 2002

Currently Teaching
STAT 617-010 – Multivariate Methods

Research Interests

Dimension reduction, high dimensional data analysis,  multivariate analysis, envelope models, imaging data analysis, longitudinal data analysis, econometrics, health and environmental applications.

Recent Publications

Qian, W., Ding, S., and Cook, R. D. (2018). Sparse minimum discrepancy approach to sufficient dimension reduction with simultaneous variable selection in ultrahigh dimension. Journal of American Statistical Association. 1-48.

Wang, L.* and Ding, S. (2018). Vector-autoregression and envelope model.  Stat. Accepted.

Ding, S. and Cook, R. D. (2018). Matrix variate regressions and envelope models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80, 387-408.

Supplement to “Matrix variate regressions and envelope models”, Journal of the Royal Statistical Society: Series B, 1-36.

Zia, A., Messer, K. D., Ding, S., Miao, H., Suter, J., Fooks, J. R., Guilfoos, T., Trandafir, S., Uchida, E., Tsai, Y., Merrill, S., Turnbull, S., and Koliba, C. (2016). Spatial effects of sensor information in inducing cooperative behaviors for managing non-point source pollution: Evidence from a decision game in an idealized watershed. Preprint.

Jain, Y.* and Ding, S. (2017). An integrative sufficient dimension reduction method for multi-omics data analysis. Proceedings of ACM BCB. Accepted.

Ding, S. and Cook, R. D. (2015). Tensor sliced inverse regression. Journal of Multivariate Analysis. 133, 216-231.

Ding, S. and Cook, R. D. (2015). Higher-order sliced inverse regression. Wiley Interdisciplinary Reviews: Computational Statistics. 7, 249-257.

Ding, S. and Cook, R. D. (2014). Dimension folding PCA and PFC for matrix-valued predictors. Statistica Sinica, 24, 463-492.

Ding, S. and Sinha, M. (2011). Evaluation of power of different Cox proportional hazards models incorporating stratification factors. In JSM Proceedings. Miami, FL: American Statistical Association, 4307-4320.

*Student authors

Picture

Contact Information
Shanshan Ding, Ph.D.

Assistant Professor of Statistics

Applied Economics and Statistics
225 Townsend Hall
531 S. College Avenue
Newark, DE 19716
Phone: 301-831-1884
Fax number: 302-831-6243
Email: sding@udel.edu