COMPARATIVE OVERVIEW

Organic Pesticides

Many crops, like blueberries (Vaccinium spp.), require pollinators to set fruit.

Organic farms can be an important asset in protecting pollinators and other insects beneficial to agriculture, such as predators and parasitoids of crop pests. Unfortunately, however, pesticides allowed for use in organic agriculture can cause harm to bees and beneficial insects.

While pest management programs should incorporate cultural, mechanical and other practices to prevent and manage pests, sometimes pesticides are the strategy of choice. There are many considerations when choosing between different pesticide options, including efficacy, specificity, cost, and risks to human health and the environment. This fact sheet is intended to be a quick reference to help you select and use organically-approved pesticides with the least impact on bees and other beneficial insects

Bees can be exposed to pesticides in different ways as they move through the landscape. In addition to direct exposures to adult bees out collecting pollen and nectar or seeking mates and nesting sites, pesticides may be carried back to nests in contaminated pollen or nectar or nest materials, where they may harm larval bees. For pesticides that break down quickly in the environment, applying in the evening or at night can reduce exposure and harm to pollinators.

Pesticide toxicity to bees is complex and difficult to measure. Effects of pesticides range from immediate mortality to sublethal effects such as changes in reproduction, foraging, navigation, and memory. The toxicity ratings in this fact sheet are based on the most readily available toxicity data for bees, acute lethality. Where available, we considered other peerreviewed research studies to expand our understanding of toxicity.

For more detailed information on organic-approved pesticides, including discussion of managing pests while protecting pollinators, preventive pest management, modes of action, and current research on pesticide impacts on bees and other beneficial insects, download the full guidelines at: www.xerces.org/guidelines-organic-pesticides.

An Overview of Common Organic Pesticides

The table below provides a comparative overview of pesticides commonly permitted (or referrenced) for U.S. organic agriculture. Use this table to determine which pesticide(s) is most appropriate for your situation as part of a new or existing Integrated Pest Management plan. See back for more information on how to download the complete guidelines, Organic Pesticides: Minimizing Risks to Pollinators and Beneficial Insects.

NOTES

- * **TYPE**—insecticide (I); miticide (M); fungicide (F); herbicide (H); repellent (R); adjuvant (A); plant growth regulator (P)
- **BONOT APPLY** directly to, or allow to drift onto, flowering plants **† MOA**—Mode of action (e.g., how a pesticide works)

ACTIVE INGREDIENT (A.I.) Acetic acid (vinegar)		TYPE*				EXAMPLE PRODUCT NAMES	BEE TOXICITY		NOTES & SPECIAL PRECAUTIONS	
			Н	A		Weed Pharm	MEDIUM	MEDIUM	Applications made with concentrations of acetic acid ov	
Azadirachtin / neem oil	IN	1				Neemix, Trilogy, Azatrol, Debug, Neem Pro	MEDIUM		Mixing with soap increases toxicity to bees	
Bacillus amyloliquefaciens		F				Stargus	LOW			
Bacillus subtilis		F				Serenade	MEDIUM		SLOW-ACTING MOA [†] —Impacts on bees likely to be delayed	
Bacillus thuringiensis ssp. aizawai	1					Xentari, Agree	MEDIUM-HIGH		SLOW-ACTING MOA [†] —Impacts on bees likely to be delayed	
Bacillus thuringiensis ssp. kurstaki / israelensis	1					DiPel, Javelin, Biobit	LOW		Toxic to butterflies and other beneficials (Diptera)	
Beauveria bassiana	1					BotaniGard	MEDIUM-HIGH ^w		SLOW-ACTING MOA [†] —Impacts on bees likely to be delayed	
Bicarbonates (sodium / potassium)		F				Armicarb, Kaligreen, Remedy	LOW			
Boric acid	1					Boric acid, Borax	LOW		Uses for structural pest control are unlikely to affect bee	
Burkholderia spp. strain A396	IN	1				Venerate, Majestene	LOW-MEDIUM		MOA [†] suggests that impacts could be delayed, but no d	
Cedar oil	IN	1		R		CedarCide	LOW-MEDIUM		Repellent to bees and may disrupt pollination	
Chromobacterium subtsugae	IN	1				Grandevo	LOW-MEDIUM		 SLOW-ACTING MOA[†]—Impacts on bees likely to be delayed 	
Cinnemaldehyde	IN	1 F				Cinnacure, Cinnerate, Bravado	LOW		 Toxic to other beneficials (ground beetles, mites, nematic 	
Citrus oil (Limonene / D-limonene)	1		Η			GreenMatch, Orange Guard, Avenger	LOW		Repellent to bees and may disrupt pollination	
Coppers		F				Badge, Champ, Nu-Cop, Cuprocaffaro	LOW-MEDIUM		Avoid heavy repeated use—copper can accumulate in section.	
└→Copper sulfate (CuSO₄)		F				Copper sulfate, CuSO ₄	LOW-MEDIUM			
└→Copper sulfate + lime (Bordeaux mixture)		F				Bordeaux	MEDIUM		A Do not apply copper(s) within one week of Beauver	
Corn gluten			Η			Corn gluten	LOW			
Cydia pomonella granulovirus	1					Cyd-X	LOW			
Diatomaceous earth	IN	1				Diatomaceous earth	MEDIUM		SLOW-ACTING MOA [†] —Impacts on bees likely to be delayed	
Garlic, cottonseed, or clove oil	IN	1 F		R		GC-Mite, Matratec, Scary Garlic Plus	LOW-MEDIUM		(
Gibberellic acid					Р	ProGibb	LOW-MEDIUM		C	
Gliocladium catenulatum		F				Prestop	LOW		MOA [†] suggests that impacts could be delayed, but no d	
Horticultural oil / narrow range oil	IN	1 F				JMS Stylet Oil, Ecotrol, Leaf Life Gavicide Green	MEDIUM		 Only toxic to bees upon direct contact; if applying during 	
Hydrogen dioxide, peroxyacetic acid		F				Oxidate 2.0	HIGH		C	
Insecticidal soap	IN	1 F				M-Pede	LOW-MEDIUM		C	
Isaria fumosorosea	IN	1				Preferal, NoFly	LOW-MEDIUM		 SLOW-ACTING MOA⁺—Impacts on bees likely to be delayed 	
Kaolin clay	IN	1				Surround	LOW		Can disrupt foraging bees at time of application; if apply	
Lime sulfur	IN	1 F				Lime sulfur, Sulforix	LOW-MEDIUM		Repellent to bees and may disrupt pollination	
Pyrethrins	IN	1				PyGanic, Azera	HIGH			
Pythium oligandrum		F				Polyversum	LOW		MOA ⁺ suggests that impacts could be delayed, but no d	
Reynoutria sachalinensis extract		F				Regalia	LOW			
Rotenone	IN	1				PROHIBITED FOR USE IN U.S. ORGANIC AGRICULTURE	MEDIUM-HIGH		K Highly toxic to honey bee larvae	
Ryania/Ryanodine						CANCELLED	LOW-MEDIUM		\leqslant Slow-acting MOA $^{+}$ —Impacts on bees likely to be delayed	
Sabadilla (Schoenocaulon officinale)						Veratran-D	MEDIUM		C	
Spinosad	IN	1				Entrust, Success, Regard	HIGH		Granular spinosad bait products generally have a much	
Streptomyces spp.		F				Actinovate, MycoStop	LOW		Only registered for greenhouses / ornamentals	
Sulfur	IN	1 F				Sulfur, Microthiol	LOW		 Repellent to bees and may disrupt pollination; may redu 	
Tea tree oil		F				Timorex	LOW			
Trichoderma spp.		F				Bio-Tam 2.0	LOW		✓ Slow-acting MOA ⁺ —Impacts on bees likely to be delayed	

DISCLAIMER: This document is provided only as a guide. It offers sciencebased information to help you make informed decisions to reduce the risk of pest management efforts to pollinators and other beneficial insects. It may also contain specific pest management suggestions, including pesticide uses, but does not guarantee the efficacy of these uses. While based on guidance, advice,

research literature, or other documentation, these recommendations are just that: recommendations for applicators and land managers to consider when developing or refining a specific pest management plan.

In the event of a conflict between this guide and the pesticide label, the pesticide user has sole and complete responsibility to comply with the applicable laws and the pesticide label instructions. Xerces and Xerces' employees are not licensed pesticide applicators or advisors. Xerces makes no warranty, expressed or implied, regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information contained in this document and assumes no liability resulting from use of such information. Risk of personal injury or

This fact sheet on organic pesticides was produced by the Xerces[®] Society. For more information about pollinator conservation, please visit www.xerces.org. for Invertebrate Conservatior

ver 10% likely to be toxic to bees and other beneficials

; 🛦 (see Coppers below); W—wet formulation

s; use caution if applying fertilizers that contain boric acid ata currently available

l; repellent to bees and may disrupt pollination for up to a week odes)

soils and contaminated soils are difficult to remediate

ria application

ata currently available bloom, apply at night to minimize risk to bees

ing during bloom, apply at night

ata currently available

lower exposure risk for bees

ice pollen viability for some crops

property damage from any pesticide use is assumed by the pesticide user. Any trade names contained in this document are for identification and reference only, and no product endorsement or discrimination against similar materials is intended.

Organic farms can support diverse and abundance pollinator and beneficial insect populations. Protecting these insects from pesticides is key to sustaining their populations and the important pollination and pest control services they provide.

Download the full guidelines at: http://xerces.org/guidelines-organic-pesticides

Source

Adamson, N. L., E. May, A. Code, E. Lee-Mäder, S. Morris, and M. Vaughan. 2018. *Organic Pesticides: Minimizing Risks to Bees and Other Agriculturally Beneficial Insects.* 20 pp. Portland, OR: The Xerces Society for Invertebrate Conservation.

Acknowledgments

This material is based upon work supported by the Natural Resources Conservation Service, U.S. Department of Agriculture (USDA), under number 69-3A75-12-253. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the USDA.

Additional Resources:

- Guidance to Protect Habitat from Pesticide Contamination: <u>xerces.org/guidance-to-protect-habitat-from-pesticide-contamination/</u>
- How to Reduce Bee Poisoning from Pesticides. Oregon State University. <u>http://bit.ly/OSU_ReduceBeePoisoning</u>

Photographs & Layout

PHOTO CREDITS: *Front cover*—bumble bee pollinating blueberries [left], © the Xerces Society / Nancy Lee Adamson; lowbush bluberry harvest [right] © the Xerces Society / Eric Venturini. *Back cover*—male mining bees sleeping on apple blossoms, by Tom Potterfield (<u>flickr.</u> <u>com/tgpotterfield</u>). Formatted by Sara Morris, the Xerces Society.

Copyright © 2019 the Xerces® Society for Invertebrate Conservation

628 NE Broadway Ste. 200 , Portland, OR 97232 tel 503.232.6639 • fax 503.233.6794 • <u>www.xerces.org</u>

Regional offices from coast to coast. The Xerces Society is an equal opportunity employer and provider. Xerces[®] is a trademark registered in the U.S. Patent and Trademark Office.